К вопросу о сверхсветовой скорости движения нейтрино. Сверхсветовые нейтрино: гипотезы и теории относительно загадочных частиц




Скорость света - одна из универсальных физических констант, она не зависит от выбора инерциальной системы отсчета и описывает свойства пространства-времени в целом. Скорость света в вакууме равна 299 792 458 метров в секунду, и это предельная скорость движения частиц и распространения взаимодействий. Так учат нас школьные книги по физике. Еще можно вспомнить о том, что масса тела как раз не является постоянной и при приближении скорости к скорости света стремится к бесконечности. Именно поэтому со скоростью света движутся фотоны - частицы без массы, а частицам с массой это значительно труднее.

Однако международный коллектив ученых масштабного эксперимента OPERA, расположенного недалеко от Рима, готов поспорить с азбучной истиной.

Ему удалось обнаружить нейтрино, которые, как показали эксперименты, движутся со скоростью больше скорости света, сообщает пресс-служба Европейской организации ядерных исследований (CERN).

Эксперимент OPERA (Oscillation Project with Emulsion-tRacking Apparatus) изучает самые инертные частицы Вселенной - нейтрино. Они настолько инертны, что могут пролететь насквозь через весь Земной шар, звезды и планеты, а для того, чтобы они ударились в преграду из железа, размер этой преграды должен быть от Солнца до Юпитера. Каждую секунду через тело каждого человека на Земле проходит порядка 1014 нейтрино, испущенных Солнцем. Вероятность того, что хотя бы одно из них ударится в ткани человека на протяжении всей его жизни, стремится к нулю. По этим причинам регистрировать и изучать нейтрино чрезвычайно трудно. Лаборатории, которые этим занимаются, находятся глубоко под горами и даже подо льдами Антарктиды .

OPERA получает пучок нейтрино из CERN, где находится Большой адронный коллайдер. Его «младший брат» - суперпротонный синхротрон (SPS) - направляет пучок прямо под землей в сторону Рима. Получаемый пучок нейтрино проходит сквозь толщу земной коры, тем самым очищаясь от других частиц, которые вещество коры задерживает, и попадает прямиком в лабораторию в Гран-Сассо, укрытую под 1200 м скалы.



Подземный путь в 732 км нейтрино преодолевают за 2,5 миллисекунды.

Детектор проекта OPERA, состоящий из примерно 150 тысяч элементов и весящий 1300 т, «ловит» нейтрино и изучает их. В частности, основной целью является изучение так называемых нейтринных осцилляций - переходов из одного типа нейтрино в другой.

Ошеломляющие результаты о превышении скорости света подкреплены серьезной статистикой: лаборатория в Гран-Сассо наблюдала около 15 тыс. нейтрино. Ученые выяснили, что нейтрино движутся со скоростью, на 20 миллионных долей превышающей скорость света - «непогрешимый» предел скорости.

Этот результат стал для них неожиданностью, его объяснения пока не предложено. Естественно, для его опровержения или подтверждения требуются независимые эксперименты, проведенные другими группами на другом оборудовании, - этот принцип «двойного слепого контроля» реализован и на Большом адронном коллайдере CERN. Коллаборация OPERA незамедлительно опубликовала свои результаты, чтобы дать возможность коллегам по всему миру проверить их. Детальное описание работ доступно на сайте препринтов Arxiv.Org

«Эти данные стали полной неожиданностью. После месяцев сбора, анализа и очистки данных, а также перекрестных проверок мы не нашли ни в алгоритме обработке данных, ни в детекторе возможного источника системной ошибки. Поэтому мы публикуем наши результаты, продолжаем работу, а также надеемся, что независимые измерения других групп помогут понять природу этого наблюдения», - заявил руководитель эксперимента OPERA Антонио Эредитато из Университета Берна, слова которого приводит пресс-служба CERN.

«Когда ученые-экспериментаторы обнаруживают некий неправдоподобный результат и не могут найти артефакта, который бы его объяснял, они обращаются к своим коллегам из других групп, чтобы началось более широкое исследование вопроса. Это хорошая научная традиция, и коллаборация OPERA сейчас следует ей.

Если наблюдения превышения скорости света подтвердятся, это может изменить наше понимание физики, но мы должны удостовериться в том, что они не имеют другого, более банального объяснения. Для этого и нужны независимые эксперименты», - заявил научный директор CERN Серджо Бертолуччи.

Проводимые в OPERA измерения чрезвычайно точны. Так, расстояние от точки пуска нейтрино до точки их регистрации (более 730 км) известно с точностью до 20 см, а время пролета измеряется с точностью до 10 наносекунд.

Эксперимент OPERA работает с 2006 года. В нем принимают участие примерно 200 физиков из 36 институтов и 13 стран, в том числе и из России.

Повторные эксперименты с нейтрино, проведенные в ноябре, подтвердили превышение скорости света.

Глава лаборатории элементарных частиц Физического института имени Лебедева РАН (ФИАН) Наталья Полухина, которая входит в состав команды OPERA, сообщила Агентству РИА Новости, что после проведения повторных экспериментов выяснилось, что 730 км между ускорителем и детектором частицы преодолевали на 57 наносекунд быстрее скорости света: «Известны результаты проверки, коллаборация и независимые эксперты проверяли все очень тщательно, был специально организован дополнительный пучок нейтрино из ЦЕРНа, результат остался практически тем же – не 60, а 57 наносекунд».

Небольшой экскурс в историю этого довольно странного названия – «нейтрино».

Когда эта частица впервые появилась в физике, ученые уже твердо знали, что существуют такие элементарные частицы, как нейтроны и протоны – «кирпичики», составляющие атомное ядро. Нейтрон не имеет электрического заряда, и по этой причине он получил такое название.

В 1931 г. известный швейцарский физик Вольфганг Паули по причинам, которые я объясню ниже, пришел к выводу, что в природе должна существовать еще одна нейтральная частица с массой, намного меньшей, чем у нейтрона, как он говорил, «маленький нейтрон». Когда он излагал эту идею с трибуны одного международного научного совещания, итальянский физик Энрико Ферми перебил его словами:

Называйте его «нейтрино»!

Дело в том, что по-итальянски уменьшительно-ласкательное окончание «ино» соответствует русским суффиксам «чик» или «ушк». Так что нейтрино в переводе с итальянского будет означать «маленький нейтральный», или просто «нейтрончик».

Подожди, Сэнсэй, что значит в значительной степени проявляется Аллат?! Я что-то не совсем понял,- проговорил Николай Андреевич.

Видишь ли. Нейтрино в значительной степени отличается от других так называемых элементарных частиц. Во-первых, нейтрино может иметь массу, а может не иметь. Может взаимодействовать с гравитационным полем, с теми же магнитными или электромагнитными полями, а может, и нет. Более того, нейтрино способно перемещаться со скоростью света, но в отличие от него может замедляться и менять свою траекторию. И, пожалуй, самые фантастические с позиции современной физики возможности нейтрино заключаются в его способности мгновенно перемещаться на неограниченные расстояния.

Это как? - спросил Женя.

Элементарно. Взаимодействуя с гравитационным полем, нейтрино переходит из одного состояния в другое. Скажем так, из состояния частицы в состояние энергии со строго определённой частотой, при этом «возбуждая» гравитационное поле, к примеру, в определённой точке нашей солнечной системы, оно вызывает ответное возбуждение в определённой точке гравитационного поля в другой галактике. И таким образом, без потери времени и независимо от пространства, нейтрино исчезает здесь и сейчас и появляется там и сейчас. Как говорят физики, образует «червоточину» во времени и пространстве.

Вот это да! - вырвались возгласы ребят.

Используя естественные, вернее, физические свойства нейтрино, люди также смогут преодолевать любые расстояния без потери времени и минимуме энергозатрат.

Ну, если честно, то звучит как фантастика, - скептически заметил Николай Андреевич.

Ну, если честно, - Сэнсэй сделал акцент на первых словах, - то ещё сто лет назад атомная бомба тоже была фантастикой… А что касается нейтрино, то я скажу даже больше: не было бы нейтрино, то не было бы жизни. Нейтрино играет колоссальную роль в образовании видимого вами мира. И кстати имеет, так же как и Аллат, цельную единицу времени - 11 минут 56,74 секунд.


- Анастасия НОВЫХ Эзоосмос

23 сентября 2011 года из Италии пришла удивительная новость - мюонные нейтрино, возникающие при распаде мезонов, движутся быстрее света. Эта новость является удивительной для любого сколь-нибудь образованного человека, ведь он знает - теория относительности Эйнштейна запрещает двигаться чему-либо так быстро. Как оказалось, революции в физике пока не произошло, но сам факт ее теоретической возможности и ненулевой вероятности заслуживает отдельного рассказа.

Кто вы, мистер нейтрино?

В 1914 году английский физик Джеймс Чедвик, изучая бета-распад (это когда ядро некоторого элемента неожиданно излучает электрон или позитрон), обнаружил интересный и пугающий факт - энергия получившегося в результате распада ядра меньше расчетной. Несколько десятилетий эта проблема мешала физикам жить, ведь закон сохранения энергии - вещь совершенно фундаментальная. Дошло до, казалось бы, абсурда - какое-то время сам Нильс Бор, классик квантовой механики, готов был признать, что закон сохранения в микромире не обязан выполняться, поскольку тому нет "ни экспериментальных, ни теоретических доказательств".

В 1930 году Вольфганг Паули, скрепя сердце, решился ввести новую частицу. "Я допускаю, что мой прием может на первый взгляд показаться довольно невероятным, потому что, если бы нейтрино существовало, оно было бы давно открыто. Тем не менее, кто не рискует, тот не выигрывает. Поэтому мы должны серьезным образом обсуждать любой путь к спасению", - написал он в своем знаменитом письме к Тюбингенскому научному конгрессу (тогда физики еще болезненно воспринимали необходимость введения новых частиц).

Полученную частицу окрестили нейтроном, поскольку она имела нулевой электрический заряд. Тут случился забавный казус - в 1932 году Чедвик открыл нейтральную частицу, которую тоже назвал нейтроном. Из-за этого, когда через два года Энрико Ферми представил уже полноценную теорию бета-распада (тогда уже было понятно, что нейтрон Паули и нейтрон Чедвика совсем разные), ему потребовалось переименовать придуманную Паули частицу. Он и стал автором термина "нейтрино", что можно перевести как "нейтрончик".

Младший брат нейтрона хоть и спас закон сохранения энергии (а также, как выяснилось чуть позже, законы сохранения импульса и момента количества движения), но оказался частицей довольно неприятной. Во-первых, выяснилось, что он очень неохотно взаимодействует с материей - при энергиях в 3-10 мегаэлектронвольт длина свободного пробега частицы составляет порядка 100 световых лет. Кроме этого, оказалось, что Солнце просто-таки бомбит нашу планету нейтрино - через площадку в 1 квадратный сантиметр за секунду проходит порядка 100 миллиардов нейтрино, - однако мы этого не замечаем.

В 1960-е годы выяснилось, что существует несколько типов нейтрино (за экспериментальное подтверждение этого факта Леон Ледерман, Мэдвин Шварц и Джек Стейнбергер в 1988 году получили Нобелевскую премию по физике). В частности, они обнаружили, что есть электронные нейтрино, а есть и мюонные, возникающие при распаде пи-мезонов.

Скоро сказка сказывается, но не скоро дело делается - в начале 2000-х ученые уже знали про нейтрино много, но при этом, правда, большая часть информации была получена экспериментально. С точки зрения теории, нейтрино было и остается крепким орешком - часто на один и тот же вопрос разные теоретические предпосылки давали и дают диаметрально противоположные ответы. Еще одной трудностью в изучении данных частиц являются масштабы детекторов, которые необходимо строить (об этом, впрочем, чуть ниже).

Как бы то ни было, но на настоящий момент известно, что всего есть три поколения нейтрино - тау, мюонные и электронные. У каждой частицы есть ее антипод - антинейтрино соответствующего поколения. Выяснилось, что нейтрино - непостоянная частица, поэтому во время движения осциллирует, то есть может превращаться из частицы одного поколения в частицу другого. Из этого непосредственно вытекает (здесь мы, конечно, опускаем пять - десять страниц вычислений и кучу научных работ), что масса покоя у этой частицы ненулевая - до недавнего времени, кстати, физики были в этом совсем не уверены. Более того, уже упоминавшийся Паули, по сути папа нейтрончика, считал этот параметр нулевым.

В последние годы нейтрино часто попадали в новости как частицы, которые просто никак не хотят укладываться в стандартную модель. Например, в 2010 году ученые, работающие с экспериментом MINOS (Main Injector Neutrino Oscillation Search - поиск нейтринных осцилляций с использованием главного инжектора) в Миннесоте, объявили, что им удалось найти различия у нейтрино и антинейтрино. Так, оказалось, что процесс осцилляции для этих двух видов , а квадраты разности масс разных поколений в одном из случаев оказались на 40 процентов меньше для антинейтрино, чем для нейтрино (понятное дело, что с точки зрения современной теории элементарных частиц это просто недопустимо). В 2011 году японский детектор T2K, который ловит нейтрино, испускаемые ускорителем в комплексе J-PARC, зарегистрировал ранее неизвестный тип осцилляции - мюонные нейтрино превращались в электронные (хотя могут только в тау) - что тоже стало для большинства физиков полной неожиданностью.

Понятное дело, что все эти трудности не выходили за рамки физики элементарных частиц - в упомянутых случаях, между прочим, физики ограничились докладами, так и не сделав по собранным данным работ, ссылаясь на "недостаточную статистическую достоверность результатов". Но, вероятно, нейтринные странности копились слишком долго, и гром грянул 23 сентября 2011 года.

Быстрее света

Именно в этот день мир облетела новость от ученых, работающих с детектором OPERA (Oscillation Project with Emulsion-tRacking Apparatus - проект по изучению нейтринных осцилляций, использующий анализ эмульсионных пленок) - кстати, тем самым детектором, на котором в 2010 году впервые напрямую удалось зарегистрировать факт пресловутых нейтринных осцилляций. Изучая отличие скорости нейтрино от скорости света, они обнаружили, что мюонные нейтрино не только не отстают от света, как положено с точки зрения теории относительности массивным частицам, но и обгоняют его!

Тут необходимо понимать две вещи. Во-первых, в теоретических расчетах сверхсветовые скорости получаются сплошь и рядом. В Википедии есть несколько неплохих примеров - особенно впечатляет, что, когда крутишь головой, в системе координат, связанной с ней, Луна движется быстрее скорости света. При этом общий консенсус при объяснении таких феноменов довольно прост: подобные процессы не позволяют передавать информацию, а, значит, вполне допустимы.

Во-вторых, скепсис к новому открытию подогревала и подача материала новостными агентствами. Вот, например, как это преподнесли "Вести" . В сюжете фигурировали фразы наподобие "Европейские ученые растерянно пожимают плечами и думают, а что дальше-то делать? ", "Ученые не поверили своим собственным данным и кинулись все перепроверять, но получили тот же результат" и совершенно фантастическое "теория относительности в этом случае летит в тартарары". После этого, понятное дело, возникает мысль о том, что ученых снова не так поняли.

Вместе с тем ситуация оказалась намного серьезнее. В архиве препринтов Корнельского университета с подробным изложением результатов экспериментов. В ней, среди прочего, говорится, что в рамках эксперимента ученым удалось зарегистрировать 16111 событий, когда нейтрино приходили раньше расчетного времени. Статистический анализ позволил установить, что в среднем скорость мюонного нейтрино превышает скорость света на 0,00248 процента. Надо сказать, что это не первое заявление подобного рода - в 2007 году MINOS обнаружил, что нейтрино от ускорителя в лаборатории Ферми приходят чуть раньше, чем нужно (тогда, правда, ученые посчитали это ошибкой в измерениях).

В распространенном по случаю появления статьи пресс-релизе говорится, что авторы работы понимают все последствия, которые несет их заявление, поэтому не намерены публиковать работу в рецензируемом журнале до тех пор, пока у их результата не появится независимое подтверждение. В частности, именно MINOS мог бы подтвердить результаты итальянского детектора. При этом, как говорит Антонио Эредитато, представитель коллаборации OPERA (в ней принимают участие 160 ученых из разных стран, включая Россию), эксперимент ученых устроен достаточно просто: "Мы измеряем расстояние, измеряем время и делим одно на другое - так же, как делается в школе".

На самом деле, конечно, Эридитато лукавит. Сначала в суперпротонном синхротроне (SPS), что расположен в CERN на границе Франции и Швейцарии и обычно используется для предварительного разгона пучков для Большого адронного коллайдера, каждые шесть секунд протоны бомбят графитовую мишень. В результате этого возникают мезоны, которые в полете начинают распадаться с выделением мюонных нейтрино (для этого частицам предоставлен туннель длиной в один километр). Полученные частицы пролетают 730 километров (расстояние измеряется с точностью до 20 сантиметров), пересекая несколько государственных границ, и оказываются в Италии, где их уже ждут в Национальной лаборатории Гран-Сассо .

Здесь, под толщей горных пород в 1,4 километра (при этом, кстати, комплекс почти на километр выше уровня моря), располагается крупнейшая в мире лаборатория по изучению элементарных частиц. Подобное расположение позволяет свести к минимуму фон, создаваемый элементарными частицами из космоса и земных недр. Здесь частицы регистрируются при помощи детектора, состоящего из 150 тысяч фотоэмульсионных пластин, свинцовых прослоек толщиной около миллиметра и магнитного спектрографа.

Понятное дело, что образование нейтрино завязано на вероятности, поэтому ученые получали некоторое статистическое распределение. Главным достижением ученых была невероятно точная синхронизация (порядка 10 наносекунд) часов в CERN и в Италии. Для этого, в частности, ученые привлекли специалистов из CERN и METAS (это швейцарские метрологи). Открытию посвятили пресс-конференцию, которую транслировали в интернет прямо из CERN вечером 23 сентября 2011 года.

Возможные объяснения

Самым популярным пока объяснением обнаруженного феномена называют систематическую ошибку в измерениях. "Эти результаты - следствие систематической ошибки в измерениях. Я бы не стал клясться женой и детьми - им это не понравится, но могу поклясться собственным домом", - приводит ScienceNOW слова Чен Кен Джуна, физика из Университета Стоуни-Брук.

Другие ученые не столь оригинальны в своих высказываниях, однако тоже отмечают, что результат итальянского детектора - не первая попытка опровергнуть постулат Эйнштейна о предельности скорости света. Вместе с тем во всех работах подобного рода рано или поздно обнаруживались ошибки. Стало быть, обнаружатся они и в этой работе. Некоторые исследователи отмечают, что данный результат может служить подтверждением экзотических физических теорий, которые, например, предполагают наличие дополнительных измерений (как именно связана высокая скорость нейтрино с подобными теориями, не уточняется).

Наконец, самый простой вариант заключается в том, что гравитация Эйнштейна требует каких-нибудь поправок. В частности, например, есть вариант нарушения лоренц-инвариантности нейтринных осцилляций (в похожем направлении работают физики по всему миру, пытаясь, в частности, включить в Стандартную Модель тахионы - частицы, изначально движущиеся со скоростью, большей скорости света). Адепты такого рода теорий вполне могут оказаться теми самыми физиками, которым удалось "заглянуть" в будущее.

В общем, неважно, кто окажется прав - главное, чтобы открытие ученых не оказалось досадной систематической ошибкой. Ведь это будет означать настоящую революцию в физике, а это всегда очень здорово.

Скорость света — одна из универсальных физических констант, она не зависит от выбора инерциальной системы отсчета и описывает свойства пространства-времени в целом. Скорость света в вакууме равна 299 792 458 метров в секунду, и это предельная скорость движения частиц и распространения взаимодействий. Так учат нас школьные книги по физике. Еще можно вспомнить о том, что масса тела как раз не является постоянной и при приближении скорости к скорости света стремится к бесконечности. Именно поэтому со скоростью света движутся фотоны — частицы без массы, а частицам с массой это значительно труднее.

Однако международный коллектив ученых масштабного эксперимента OPERA, расположенного недалеко от Рима, готов поспорить с азбучной истиной.

Ему удалось обнаружить нейтрино, которые, как показали эксперименты, движутся со скоростью больше скорости света,

сообщает пресс-служба Европейской организации ядерных исследований (CERN).

Эксперимент OPERA (Oscillation Project with Emulsion-tRacking Apparatus) изучает самые инертные частицы Вселенной — нейтрино. Они настолько инертны, что могут пролететь насквозь через весь Земной шар, звезды и планеты, а для того, чтобы они ударились в преграду из железа, размер этой преграды должен быть от Солнца до Юпитера. Каждую секунду через тело каждого человека на Земле проходит порядка 10 14 нейтрино, испущенных Солнцем. Вероятность того, что хотя бы одно из них ударится в ткани человека на протяжении всей его жизни, стремится к нулю. По этим причинам регистрировать и изучать нейтрино чрезвычайно трудно. Лаборатории, которые этим занимаются, находятся глубоко под горами и даже подо льдами Антарктиды.

OPERA получает пучок нейтрино из CERN, где находится Большой адронный коллайдер. Его «младший брат» — суперпротонный синхротрон (SPS) — направляет пучок прямо под землей в сторону Рима. Получаемый пучок нейтрино проходит сквозь толщу земной коры, тем самым очищаясь от других частиц, которые вещество коры задерживает, и попадает прямиком в лабораторию в Гран-Сассо, укрытую под 1200 м скалы.

Подземный путь в 732 км нейтрино преодолевают за 2,5 миллисекунды.

Детектор проекта OPERA, состоящий из примерно 150 тысяч элементов и весящий 1300 т, «ловит» нейтрино и изучает их. В частности, основной целью является изучение так называемых нейтринных осцилляций — переходов из одного типа нейтрино в другой.

Ошеломляющие результаты о превышении скорости света подкреплены серьезной статистикой: лаборатория в Гран-Сассо наблюдала около 15 тыс. нейтрино. Ученые выяснили, что

нейтрино движутся со скоростью, на 20 миллионных долей превышающей скорость света — «непогрешимый» предел скорости.

Этот результат стал для них неожиданностью, его объяснения пока не предложено. Естественно, для его опровержения или подтверждения требуются независимые эксперименты, проведенные другими группами на другом оборудовании, — этот принцип «двойного слепого контроля» реализован и на Большом адронном коллайдере CERN. Коллаборация OPERA незамедлительно опубликовала свои результаты, чтобы дать возможность коллегам по всему миру проверить их. Детальное описание работ доступно на сайте препринтов Arxiv.Org .

Официальное представление результатов состоится сегодня на семинаре в CERN в 18.00 по Москве, будет вестись онлайн-трансляция .

«Эти данные стали полной неожиданностью. После месяцев сбора, анализа и очистки данных, а также перекрестных проверок мы не нашли ни в алгоритме обработке данных, ни в детекторе возможного источника системной ошибки. Поэтому мы публикуем наши результаты, продолжаем работу, а также надеемся, что независимые измерения других групп помогут понять природу этого наблюдения», — заявил руководитель эксперимента OPERA Антонио Эредитато из Университета Берна, слова которого приводит пресс-служба CERN.

«Когда ученые-экспериментаторы обнаруживают некий неправдоподобный результат и не могут найти артефакта, который бы его объяснял, они обращаются к своим коллегам из других групп, чтобы началось более широкое исследование вопроса. Это хорошая научная традиция, и коллаборация OPERA сейчас следует ей.

Если наблюдения превышения скорости света подтвердятся, это может изменить наше понимание физики, но мы должны удостовериться в том, что они не имеют другого, более банального объяснения.

Для этого и нужны независимые эксперименты», — заявил научный директор CERN Серджо Бертолуччи.

Проводимые в OPERA измерения чрезвычайно точны. Так, расстояние от точки пуска нейтрино до точки их регистрации (более 730 км) известно с точностью до 20 см, а время пролета измеряется с точностью до 10 наносекунд.

Эксперимент OPERA работает с 2006 года. В нем принимают участие примерно 200 физиков из 36 институтов и 13 стран, в том числе и из России.

Нейтрино - это элементарная частица, которая очень похожа на электрон, но не имеет электрического заряда. Она обладает очень малой массой, которая может быть даже нулевой. От массы зависит и скорость нейтрино. Различие во времени прибытия частицы и света составляет 0,0006 % (± 0,0012 %). В 2011 г. в ходе эксперимента OPERA было установлено, что скорость нейтрино скорость света превышает, но независимый опыт этого не подтвердил.

Неуловимая частица

Это одна из наиболее распространенных частиц во Вселенной. Так как она очень мало взаимодействует с веществом, ее невероятно трудно обнаружить. Электроны и нейтрино не участвуют в сильных ядерных взаимодействиях, но и в равной степени принимают участие в слабых. Частицы, обладающие такими свойствами, называются лептонами. В дополнение к электрону (и его античастице позитрону), к заряженным лептонам относят мюон (200 масс электрона), тау (3500 масс электрона) и их античастицы. Их так и называют: электрон-, мюон- и тау-нейтрино. У каждого из них есть антиматериальная составляющая, называемая антинейтрино.

Мюон и тау, подобно электрону, имеют сопутствующие им частицы. Это мюон- и тау-нейтрино. Три типа частиц различаются друг от друга. Например, когда мюонные нейтрино взаимодействуют с мишенью, они всегда производят мюоны, и никогда тау или электроны. При взаимодействии частиц, хотя электроны и электрон-нейтрино могут создаваться и уничтожаться, их сумма остается неизменной. Этот факт приводит к разделению лептонов на три вида, каждый из которых обладает заряженным лептоном и сопровождающим его нейтрино.

Для обнаружения этой частицы необходимы очень большие и чрезвычайно чувствительные детекторы. Как правило, нейтрино с низким уровнем энергии будут путешествовать в течение многих световых лет до взаимодействия с веществом. Следовательно, все наземные эксперименты с ними полагаются на измерении их малой доли, взаимодействующей с регистраторами разумных размеров. Например, в нейтринной обсерватории в Садбери, содержащей 1000 т тяжелой воды, через детектор проходит около 1012 солнечных нейтрино в секунду. А обнаруживается только 30 в день.

История открытия

Вольфганг Паули первым постулировал существование частицы в 1930 г. В то время возникла проблема, потому что казалось, что энергия и угловой момент не сохраняются при бета-распаде. Но Паули отметил, что если будет излучаться не взаимодействующая нейтральная частица нейтрино, то закон сохранения энергии будет соблюден. Итальянский физик Энрико Ферми в 1934 развил теорию бета-распада и дал частице ее имя.

Несмотря на все предсказания, в течение 20 лет нейтрино не могли обнаружить экспериментально из-за его с веществом. Так как частицы электрически не заряжены, на них не действуют электромагнитные силы, и, следовательно, они не вызывают ионизацию вещества. Кроме того, они вступают в реакцию с веществом только через слабые взаимодействия незначительной силы. Поэтому они являются наиболее проникающими способными проходить через огромное число атомов, не вызывая никакой реакции. Только 1 на 10 миллиардов этих частиц, путешествуя через материю на расстояние, равное диаметру Земли, вступает в реакцию с протоном или нейтроном.

Наконец, в 1956 году группа американских физиков во главе с Фредериком Райнесом сообщила об В ее экспериментах антинейтрино, излучаемые ядерным реактором, взаимодействовали с протонами, образуя нейтроны и позитроны. Уникальные (и редкие) энергетические сигнатуры этих последних побочных продуктов стали доказательствами существования частицы.

Открытие заряженных лептонов мюонов стало отправной точкой для последующей идентификации второго вида нейтрино - мюонных. Их идентификация была проведена в 1962 году на основе результатов эксперимента в ускорителе частиц. Высокоэнергетические мюонные нейтрино образовывались путем распада пи-мезонов и направлялись на детектор таким образом, чтобы можно было изучить их реакции с веществом. Несмотря на то что они являются нереакционноспособными, как и другие типы этих частиц, было обнаружено, что в тех редких случаях, когда они реагировали с протонами или нейтронами, мюон-нейтрино образуют мюоны, но никогда электроны. В 1998 г. американские физики Леон Ледерман, Мелвин Шварц и Джек Штейнбергер получили Нобелевскую премию по физике за идентификацию мюон-нейтрино.

В середине 1970 годов физика нейтрино пополнилась еще одним видом заряженных лептонов - тау. Тау-нейтрино и тау-антинейтрино оказались связанными с этим третьим заряженным лептоном. В 2000 году физики в Национальной ускорительной лаборатории им. Энрико Ферми сообщили о первых экспериментальных доказательствах существования этого типа частиц.

Масса

Все типы нейтрино обладают массой, которая гораздо меньше, чем у их заряженных партнеров. Например, эксперименты показывают, что масса электрон-нейтрино должна быть меньше 0,002 % массы электрона и что сумма масс трех разновидностей должна быть меньше 0,48 эВ. В течение многих лет казалось, что масса частицы равна нулю, хотя не было никаких убедительных теоретических доказательств, почему это должно быть именно так. Затем, в 2002 году, в Нейтринной обсерватории в Садбери было получено первое прямое доказательство того, что электрон-нейтрино, испускаемые ядерными реакциями в ядре Солнца, пока они проходят сквозь него, изменяют свой тип. Такие «осцилляции» нейтрино возможны, если один или несколько видов частиц обладают некоторой малой массой. Их исследования при взаимодействии космических лучей в атмосфере Земли также свидетельствуют о наличии массы, но требуются дальнейшие эксперименты, чтобы более точно ее определить.

Источники

Естественные источники нейтрино - это радиоактивный распад элементов в недрах Земли, при котором испускается большой поток низкоэнергетических электронов-антинейтрино. Сверхновые тоже являются преимущественно нейтринным явлением, поскольку только эти частицы могут проникать сквозь сверхплотный материал, образующийся в коллапсирующей звезде; лишь малая часть энергии преобразуется в свет. Расчеты показывают, что около 2 % энергии Солнца - это энергия нейтрино, образованных в реакциях термоядерного синтеза. Вполне вероятно, что большая часть темной материи Вселенной состоит из нейтрино, образовавшихся во время Большого взрыва.

Проблемы физики

Области, связанные с нейтрино и астрофизикой, разнообразны и быстро развиваются. Текущие вопросы, привлекающие большое число экспериментальных и теоретических усилий, следующие:

  • Каковы массы различных нейтрино?
  • Как они влияют на космологию Большого взрыва?
  • Осциллируют ли они?
  • Могут ли нейтрино одного типа превращаться в другой, пока они путешествуют через материю и пространство?
  • Являются ли нейтрино принципиально отличными от своих античастиц?
  • Как звезды разрушаются и образуют сверхновые?
  • Какова роль нейтрино в космологии?

Одной из давних проблем, вызывающей особый интерес, является так называемая проблема солнечных нейтрино. Это название относится к тому, что во время нескольких наземных экспериментов, проводившихся в течение последних 30 лет, постоянно наблюдалось меньше частиц, чем необходимо для производства энергии, излучаемой солнцем. Одним из возможных ее решений является осцилляция, т. е. преобразование электронных нейтрино в мюонные или тау во время путешествия к Земле. Так как гораздо труднее измерить низкоэнергетические мюон- или тау-нейтрино, такого рода преобразование могло бы объяснить, почему мы не наблюдаем правильного количества частиц на Земле.

Четвертая Нобелевская премия

Нобелевская премия по физике 2015 года была присуждена Такааки Кадзите и Артуру Макдональду за обнаружение массы нейтрино. Это была четвертая подобная награда, связанная с экспериментальными измерениями данных частиц. Кого-то, возможно, заинтересует вопрос о том, почему мы должны так беспокоиться о чем-то, что с трудом взаимодействует с обычной материей.

Сам факт того, что мы можем обнаружить эти эфемерные частицы, является свидетельством человеческой изобретательности. Поскольку правила квантовой механики вероятностны, мы знаем, что, несмотря на то что почти все нейтрино проходят сквозь Землю, некоторые из них будут с ней взаимодействовать. Детектор достаточно большого размера способен это зарегистрировать.

Первое подобное устройство было построено в шестидесятые годы глубоко в шахте в Южной Дакоте. Шахта была заполнена 400 тыс. л чистящей жидкости. В среднем одна частица нейтрино каждый день взаимодействует с атомом хлора, превращая его в аргон. Невероятно, но Раймонд Дэвис, отвечавший за детектор, придумал способ обнаружения этих нескольких атомов аргона, и четыре десятилетия спустя в 2002 году за этот удивительный технический подвиг он был удостоен Нобелевской премии.

Новая астрономия

Поскольку нейтрино так слабо взаимодействуют, они могут путешествовать на огромные расстояния. Они дают нам возможность заглянуть в места, которые иначе мы бы никогда не увидели. Нейтрино, обнаруженные Дэвисом, образовывались в результате ядерных реакций, которые проходили в самом центре Солнца, и смогли покинуть это невероятно плотное и горячее место только потому, что они почти не взаимодействуют с другой материей. Можно даже обнаружить нейтрино, летящее из центра взорвавшейся звезды на расстоянии более ста тысяч световых лет от Земли.

Кроме того, эти частицы позволяют наблюдать Вселенную в ее очень малых масштабах, намного меньших, чем те, в которые может заглянуть Большой адронный коллайдер в Женеве, обнаруживший Именно по этой причине Нобелевский комитет решил присудить Нобелевскую премию за открытие нейтрино еще одного типа.

Загадочная недостача

Когда Рэй Дэвис наблюдал солнечные нейтрино, он обнаружил лишь треть от ожидаемого их количества. Большинство физиков считало, что причиной этого является плохое знание астрофизики Солнца: возможно, модели недр светила переоценивали количество производимых в нем нейтрино. Тем не менее на протяжении многих лет, даже после того, как солнечные модели улучшились, дефицит сохранялся. Физики обратили внимание на другую возможность: проблема могла быть связана с нашими представлениями об этих частицах. В соответствии с превалировавшей тогда теорией они массой не обладали. Но некоторые физики утверждали, что на самом деле частицы имели бесконечно малую массу, и эта масса являлась причиной их нехватки.

Трехликая частица

Согласно теории осцилляции нейтрино, в природе существует три их различных типа. Если частица обладает массой, то по мере движения она может переходить из одного типа в другой. Три вида - электронный, мюонный и тау - при взаимодействии с веществом могут преобразовываться в соответствующую заряженную частицу (электрон, мюон или тау-лептон). «Осцилляция» происходит благодаря квантовой механике. Тип нейтрино не постоянен. Он меняется с течением времени. Нейтрино, начавшее свое существование как электронное, может превратиться в мюонное, а затем обратно. Таким образом, частица, образованная в ядре Солнца, по дороге к Земле может периодически превращаться в мюон-нейтрино и наоборот. Поскольку детектор Дэвиса мог обнаружить только электрон-нейтрино, способное привести к ядерной трансмутации хлора в аргон, то казалось возможным, что недостающие нейтрино превратились в другие типы. (Как оказалось, нейтрино осциллируют внутри Солнца, а не на пути к Земле).

Канадский эксперимент

Единственным способом проверить это было создание детектора, который работал для всех трех типов нейтрино. Начиная с 90-х годов Артур Макдональд из Королевского университета в Онтарио возглавлял команду, которая это осуществила в шахте в Садбери, Онтарио. Установка содержала тонны тяжелой воды, предоставленной в кредит правительством Канады. Тяжелая вода является редкой, но встречающейся в природе формой воды, в которой водород, содержащий один протон, заменен его более тяжелым изотопом дейтерием, который содержит протон и нейтрон. Канадское правительство складировало тяжелую воду, т. к. она используется в качестве теплоносителя в ядерных реакторах. Все три типа нейтрино могли разрушить дейтерий с образованием протона и нейтрона, а нейтроны затем подсчитывали. Детектор регистрировал примерно в три раза большее число частиц по сравнению с Дэвисом - именно то количество, которое предсказывалось лучшими моделями Солнца. Это позволило предположить, что электрон-нейтрино могут осциллировать в другие его типы.

Японский эксперимент

Примерно в то же время Такааки Кадзита из Университета Токио проводил еще один замечательный эксперимент. Детектор, установленный в шахте в Японии, регистрировал нейтрино, приходящие не из недр Солнца, а из верхних слоев атмосферы. При столкновении протонов космических лучей с атмосферой образовываются ливни других частиц, в том числе мюонные нейтрино. В шахте они превращали ядра водорода в мюоны. Детектор Кадзиты мог наблюдать частицы, приходящие в двух направлениях. Одни падали сверху, приходя из атмосферы, а другие двигались снизу. Число частиц было различным, что говорило о разной их природе - они находились в разных точках своих осцилляционных циклов.

Переворот в науке

Это все экзотично и удивительно, но почему осцилляции и массы нейтрино привлекают к себе столько внимания? Причина проста. В стандартной модели физики элементарных частиц, разрабатывавшейся на протяжении последних пятидесяти лет двадцатого века, которая правильно описывала все остальные наблюдения в ускорителях и других экспериментах, нейтрино должны были быть безмассовыми. Открытие массы нейтрино говорит о том, что чего-то не хватает. Стандартная модель не является полной. Недостающие элементы еще предстоит открыть - с помощью Большого адронного коллайдера или другой, еще не созданной машины.

МОСКВА, 8 июн - РИА Новости. Ученые, работающие в нейтринном проекте OPERA, после серии экспериментов окончательно опровергли полученные ими ранее данные о способности элементарной частицы нейтрино двигаться быстрее скорости света - крупнейшая научная сенсация последних лет не прожила и года, сообщил РИА Новости один из участников эксперимента - сотрудник Объединенного института ядерных исследований (ОИЯИ) Юрий Горнушкин.

Нейтринный эксперимент OPERA оказался в центре внимания СМИ в конце сентября 2011 года, когда ученые из этой группы . По оценкам ученых, нейтрино пролетали 730 километров от ускорителя SPS в ЦЕРНе до подземного детектора OPERA в итальянской лаборатории Гран Сассо в среднем на 60 наносекунд быстрее, чем предполагали расчеты.

Однако позже участники коллаборации OPERA сообщили, что они обнаружили техническую ошибку, которая могла привести к появлению данных о превышении скорости света. Коллаборация решила провести в мае новую проверку этих результатов.

Конец сенсации

Как сообщил РИА Новости руководитель группы участников эксперимента OPERA из Объединенного института ядерных исследований (ОИЯИ) Юрий Горнушкин, на конференции Neutrino 2012 в японском городе Киото в пятницу был представлен доклад о результатах этой проверки.

"Эксперимент был повторен в конце прошлого года и в мае нынешнего года в специальных условиях, с очень короткими импульсами нейтрино из ускорителя ЦЕРНа, делающими интерпретацию результатов совершенно однозначной. Согласно последним данным, подтверждается, что скорость нейтрино совпадает со скоростью света с хорошей точностью, и, таким образом, окончательно доказывается ошибочность прошлогодних сенсационных заявлений", - сказал Горнушкин.

Проверка скорости нейтрино, проведенная OPERA, а также тремя другими нейтринными экспериментами, базирующимися в Гран-Сассо - Borexino, LVD и ICARUS - не показала значимых отклонений от скорости света.

В частности, измеренное OPERA отклонение времени прихода нейтрино от ожидаемого составило лишь 1,6 наносекунды. При этом статистическая погрешность составляет плюс-минус 1,1 наносекунды, а систематическая - до 6,1 наносекунды. Результат ICARUS - 5,1 наносекунды при суммарной погрешности плюс-минут 6,6 наносекунды, Borexino - 2,7 наносекунды плюс-минус 4,2 наносекунды, LVD - 2,9 наносекунды плюс-минус 3,6 наносекунды.

Не проверили разъем

Докладчик - Маркос Дракос (Marcos Dracos) из французского Института междисциплинарных исследований (IPHC) рассказал также о причинах ошибки.

Источником сверхсветовых нейтрино оказался плохо вставленный разъем оптического кабеля между внешней антенной GPS и блоком в системе сбора данных установки, отвечающим за синхронизацию внутренних часов установки и часов в ЦЕРНе, где определялся момент начала движения нейтрино.

"Это приводило к тому, что внутренние часы эффективно оказывались спешащими, что и приводило к ложному впечатлению, будто нейтрино прилетают раньше, чем если бы они имели скорость, равную скорости света", - сказал Горнушкин.

По его словам, задержка этого оптического кабеля была измерена в 2007 году. После этого разъем был вставлен неправильно, что привело к дополнительной задержке на этом разъеме в 73 наносекунды, но об этом уже не знали и не учитывали при расчете времени пролета нейтрино - до проверки, предпринятой в конце 2011 года. Кроме того, был обнаружен еще один эффект - частота генератора внутренних часов системы сбора данных была чуть меньше номинальной.

"Это не страшно, если время синхронизуется с внешним очень точным временным сигналом достаточно часто. Однако синхронизация производилась раз в 0,6 секунды, что давало около 15 наносекунд уже в сторону замедления времени при измерении времени пролета", - пояснил ученый.

После получения "сверхсветового результата" большинство участников эксперимента настаивали на продолжении и повторении проверок. Однако научный координатор Дарио Аутиеро (Dario Autiero), который проводил все эти измерения, уверял, что все уже много раз проверено, и сомнений нет.

В конце концов было решено сделать семинар в ЦЕРНе, после чего и возникла сенсация, а на физическое сообщество обрушился водопад объясняющих новый эффект теорий - от вполне здравых до дилетантских.

"Это, кстати, самая позитивная часть этой истории - сенсация всколыхнула научную фантазию, интерес к научным результатам в обществе. Все бы это было неплохо, любой исследователь имеет право на ошибку, но надо быть очень и очень критичным в своей работе. В нашем случае кое-кто очень хотел славы, поэтому выдавал желаемое за действительностью. Слава в результате была приобретена", - сказал Горнушкин.

Он напомнил, что руководителя эксперимента OPERA профессора Антонио Эредитато (Antonio Ereditato) и самого Аутиеро - главного ее автора.

Научный директор ЦЕРНа Серджио Бертолуччи (Sergio Bertolucci) тоже видит положительные стороны в произошедшем.

"Эта история поразила воображение публики и дала людям возможность увидеть научные методы работы в действии - неожиданный результат был подвергнут тщательной проверке, случай был основательно изучен и разрешен благодаря, в частности, сотрудничеству с другими экспериментами. Именно так науки и двигается вперед", - скаазл Бертолуччи.

Возвращение к тау-нейтрино

Теперь коллаборация прикладывает усилия, чтобы успешно завершить выполнение главной задачи эксперимента: поиска появления тау-нейтрино, но уже с другим руководством, сказал Горнушкин.

Главная задача эксперимента OPERA - исследование осцилляций нейтрино - способности этих частиц превращаться из нейтрино одного типа в другой. Всего известно три типа нейтрино - электронные, мюонные и тау-нейтрино. Их способность превращаться служит доказательством наличия массы нейтрино.

В 2010 году проект OPERA впервые зафиксировал превращение мюонного нейтрино в тау-нейтрино. Гипотеза о том, что разные типы этих частиц могут превращаться друг в друга, существует в физике достаточно давно и подкреплена множеством свидетельств, однако непосредственно превращение, нейтринную осцилляцию ученые наблюдали впервые.

Новый руководитель проекта OPERA Мицусиро Накамура (Mitsuhiro Nakamura) сообщил, что физики во второй раз "увидели" превращение мюонного нейтрино в тау-нейтрино.